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Abstract. The eigenproblems of interface spin waves of a (100) biferromagnetic interface are solved exactly
by use of the interface rescaling approach. Particularly, the necessary and sufficient conditions for the
existence of interface spin waves are obtained analytically.

PACS. 75.70.Cn Magnetic properties of interfaces (multilayers, superlattices, heterostructures) – 75.30.Ds
Spin waves – 75.10.Jm Quantized spin models

1 Introduction

Many theoretical works concerning the interface spin
waves (ISW) in various layered materials with different
configurations and compositions have appeared over the
past. Yaniv [1] has investigated the ISW of an exchange-
coupled biferromagnetic interface and found that there
may exist 0, 1 or 2 branches of ISW for a (100) inter-
face formed by two simple-cubic crystals. Ferromagnetic
ISW in cubic crystals were also studied by Xu et al. [2] and
Wang and Lin [3], very interesting results were obtained
for different faces of the same crystal or for the same face
of different crystals. Mata and Pestana [4] have considered
spin waves at the interface between two antiferromgnets
and found a variety of possible magnon states. The ISW
in a bilayer of two ferromagnetic sublattices were inves-
tigated by Che et al. [5]. Their results showed that there
may exist two branches of ISW. In another work, Hong
and Yang [6] discussed the spin waves at the interface be-
tween a ferromagnet and an antiferromagnet. In recent
years, Puszkarski and his co-operators [7–16] had studied
extensively the conditions for the existence of ISWs in var-
ious bilayer systems, which composed of two ferromagnetic
sublayers of the same magnetic material, using the method
of Brillouin zone (BZ) mapping [17] for the three interface
orientations sc(110), fcc(110), and bcc(110). They showed
that the emergence of ISWs occurs much more easily on
the edges of the BZ than at its center and that antifer-
romagnetic interface coupling considerably broadens the
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regions of interface spin waves existence (towards the BZ
center). In addition to these studies performed on the
bilayer system, many authors have also investigated the
multi-interface magnon states [18–23], and a extensive re-
view can be found in reference [7].

In this paper, we use the interface-rescaling approach
(IRA) developed by Puszkarski [24,25] to study the ISW
for the system consisting of two ferromagnets. Recently,
this technique has been widely used for a number of sys-
tems [7,26–30]. IRA has the major advantage that it
allows one to decompose a coupled system into several
independent subsystems so as to solve them exactly.
We obtain with IRA the exact solutions of ISW in
ferromagnetic bilayer systems. Particularly, we also obtain
analytically the necessary and sufficient conditions for the
existence of ISW in such kind of systems.

2 Formulations

Consider a (100) interface formed between two ferromag-
nets A and B, each one of which has a simple-cubic struc-
ture and a finite thickness. For the sake of simplicity,
we assume the two ferromagnets still have the periodic-
ity in the atomic planes parallel to the interface and the
two outer surfaces. In our theoretical study we neglect
the anisotropy in the interface, on the surfaces as well as
in the volume of the system, so that the only inhomo-
geneity of the system is assumed to come from the differ-
ence between the interface exchange constant JAB and the
bulk ones JA and JB . The Heisenberg Hamiltonian of the
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system is written as:

H = −1
2

∑
n,m

∑
i,j

J(n, i; m, j)S(n, i) · S(m, j) (1)

where n, m are the indices of the atomic planes, and i, j
the sites in the atomic planes n and m, respectively. The
interaction constant J(n, i; m, j) is nonzero only when the
sites are nearest neighbors and takes the following value:

J(n, i; m, j) =


JA, for both sites in A,

JB, for both sites in B,

JAB, for one sites in A and the other in B.

(2)

We also take

S(n, i) · S(n, i) = S(n)
[
S(n) + 1

]

=

{
SA(SA + 1), for sites in A,

SB(SB + 1), for sites in B.
(3)

In this paper, we only consider the ferromagnetic case
with J(n, i; m, j) > 0. The ground state of the present
system is all spin parallel. We now discuss the excitation of
this system at low temperatures. We first apply to H the
well-known Holstein–Primakoff transformation and only
take quadratic terms, then we have

H = H0 +
1
2

∑
n,m

∑
i,j

J(n, i; m, j)
{
S(m)C+(n, i) · C(n, i)

+S(n)C+(m, j)·C(m, j)−
√

S(n)S(m)
[
C+(n, i)·C(m, j)

+ C(n, i) · C+(m, j)
]}

, (4)

where H0 is a constant. Due to the periodicity in the
atomic planes parallel to the interface, we perform the
following Fourier transformation:

b(m, k) =
1√
N||

∑
j∈m

exp(−ik · j)C(m, j),

b+(m, k) =
1√
N||

∑
j∈m

exp(+ik · j)C+(m, j), (5)

where N|| is the number of sites in the mth atomic planes,
k the wave vector parallel to the interface and the opera-
tors b and b+ satisfy the following commutating relations:

[
b(n, k), b+(m, k′)

]
= δnmδkk′ ,[

b(n, k), b(m, k′)
]

=
[
b+(n, k), b+(m, k′)

]
= 0. (6)

We can then obtain form equations (4) and (5) the follow-
ing expression:

H =H0 +
∑

k

∑
n

{[
J(n, n)S(n) + J(n, n + 1)S(n + 1)

+ J(n, n − 1)S(n − 1)
]
b+(n, k) · b(n, k)

− J(n, n + 1)
√

S(n)S(n + 1)b+(n, k) · b(n + 1, k)

− J(n, n − 1)
√

S(n)S(n − 1)b+(n, k) · b(n − 1, k)
}
(7)

where

J(n, n) = 2
[
2 − cos kx − cos ky

]
J(n, i; n, i ± 1)

≡ 2γJn,

J(n, n ± 1) = J(n, i; n ± 1, i) = J(n ± 1, n). (8)

Here we have chosen the three lattice constants as unit
lengths and the parameter γ varies from zero to four. In
order to diagonalize the Hamiltonian (7), we introduce the
following further transformation:

a(p, k) =
∑

n

f∗(n, p)b(n, k),

a+(p, k) =
∑

n

f(n, p)b+(n, k), (9)

where f(n, p) is and orthonormalized wave function to be
determined by

Epkf(n, p) =
[
J(n, n)S(n) + J(n, n + 1)S(n + 1)

+ J(n, n − 1)S(n − 1)
]
f(n, p)

− J(n, n + 1)
√

S(n)S(n + 1)f(n + 1, p)

− J(n, n − 1)
√

S(n)S(n − 1)f(n − 1, p).
(10)

With the above transformations, the Hamiltonian (7) is
finally diagonalized

H = H0 +
∑
p,k

Epka+(p, k) · a(p, k), (11)

where Epk ≥ 0 is the excitation energy of the spin waves
in the system at low temperatures and can be obtained
from the eigenvalues of the solutions of equation (10). We
shall study it by the IRA [24,25] as follows.

Let NA and NB denote the numbers of atomic planes
of the two ferromagnets A and B, respectively. We assume
the atomic planes n = −1,−2, · · · ,−NA are occupied by
A spins, whereas the atomic planes n = 0, 1, 2, · · · , NB −
1 are occupied by B spins. In this way, the interface is
formed between the planes n = 0 and n = −1 and the
interface spins interact via the interface coupling JAB . On
the other hand, the two surfaces are the planes at n =
−NA and n = NB − 1.
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After applying the IRA to equation (10), we have the
following two subsets of eigenequations:

EfA(−NA) = JASA

[
(2γ + 1)fA(−NA) − fA(−NA + 1)

]
,

EfA(n) = JASA

[
(2γ + 2)fA(n) − fA(n + 1)

− fA(n − 1)
]
, −NA + 1 ≤ n ≤ −2,

EfA(−1) = JASA

[
(2γ + 2 − µA)fA(−1) − fA(−2)

]
(12a)

and

EfB(0) = JBSB

[
(2γ + 2 − µB)fB(0) − fB(1)

]
,

EfB(n) = JBSB

[
(2γ + 2)fB(n) − fB(n + 1)

− fB(n − 1)
]
, 1 ≤ n ≤ NB − 2,

EfB(NB − 1) = JBSB

[
(2γ + 1)fB(NB − 1)

− fB(NB − 2)
]
, (12b)

where we have omitted the indices p, k of Epk and p of
f(n, p), and set

f(n) =

{
fA(n), for n ≤ −1

fB(n), for n ≥ 0.
(13)

The parameters µA and µB in equations (12a) and (12b)
are given by

µA = 1 +
JABSB

JASA
(α−1R−1 − 1),

µB = 1 +
JABSA

JBSB
(αR − 1), (14)

where
α =

√
SA/SB, (15)

and R is the interface-rescaling coefficient that is defined
as [24,25]

fA(−1) = RfB(0). (16)

It is obvious that equations (12a) and (12b) are two for-
mally independent subsets and become much easier to be
solved exactly. The general solutions of them have the fol-
lowing form:

fA(n) = CD
[
exp(−inkA) − θA exp(inkA)

]
,

θA = exp
[
i2(NA + 1)kA

]
, −NA ≤ n ≤ −1, (17a)

and

fB(n) = C
[
exp(−inkB) − θB exp(inkB)

]
θB = exp

[
i2NBkB

]
, 0 ≤ n ≤ NB − 1, (17b)

where kA and kB are the wave vectors of the spin waves
in A and B perpendicular to the interface; C is the

normalization coefficient and D a constant with respect
to n. Inserting equations (17a) and (17b) into (12a), (12b)
and (16), we obtain

D = R exp(ikA)

× [
1 − exp( i 2 NAkA)

]
/
[
1 − exp( i 2 NBkB)

]
, (18)

and

µA = sin
[
(NA + 1)kA

]
/ sin(NAkA),

µB = sin
[
(NB + 1)kB

]
/ sin(NBkB). (19)

We can also get the excitation energy

E = 2JASA

[
γ + 1 − cos(kA)

]
= 2JBSB

[
γ + 1 − cos(kB)

]
. (20)

Here we can see the kA and kB are not independent of each
other. On the other hand, we can obtain by canceling R
from equation (14) the other constrained equation of kA

and kB.[
1 +

JASA

JABSB
(µA − 1)

] [
1 +

JBSB

JABSA
(µB − 1)

]
= 1, (21)

where µA and µB are given by equations (19).
Up to now, we have solved exactly the eigenequa-

tions (12a) and (12b). The eigenvalues of the excitation en-
ergy of the spin waves can be derived from equations (20)
and (21) when the material parameters of the system are
given.

3 Conditions for the existence of ISW

Now we turn to discuss in detail the structure of the mag-
netic excitations of the system, with particular emphasis
on the conditions for the existence of the ISW.

To facilitate our further discussion, we shall use the
concept of ‘subbands’ of the two ferromagnets introduced
in reference [1]. These subbands span the energy range
over which the corresponding bulk spin-wave energies vary
with a fixed γ. That is to say, these subbands are de-
scribed by the union of the bulk spin-wave spectra E(kA)
and E(kB), equation (20), in which γ equals a constant.
The relative relation of the γ subbands of the two bulk
ferromagnets depends on the value of the parameter β =
JBSB/JASA. Without any loss of generality, we assume
in this paper JASA ≥ JBSB, then we have

0 < β ≤ 1. (22)

As shown in Figures 1a and 1b, there are two possibilities
of the γ subbands: without (β � 2/3) and with (β < 2/3)
an energy gap between the bulk subbands (see Fig. 1).

The eigenfunctions associated with the spin waves in
the composite ferromagnets may, in general, show three
different types of behavior. In the first case (kA and kB are
both real) the spin waves can propagate in both ferromag-
nets and the corresponding eigenfunctions are extended
over both constituents. The energy of the spin waves, for
this case, lies inside the γ subbands of both ferromagnets.



264 The European Physical Journal B

Fig. 1. The γ subbands: (a) without (for β > 2/3) and (b)
with (for β < 2/3) an energy gap between the bulk subbands.

In the second case (one of kA and kB is real, whereas
the other is complex) the propagation of the spin waves is
only possible in one of the ferromagnets. The eigenfunc-
tions of the spin waves are mostly confined within one
of the constituents. Such a kind of behavior occurs for
energies that are inside the γ subband of one of the fer-

romagnets, but outside the corresponding subband of the
other.

Finally for the third case, with a far interesting behav-
ior, the eigenfunctions of the ISW are localized near the
interface and decay exponentially into the interior of each
ferromagnets. This property occurs when the wave vec-
tors kA and kB are both complex and the corresponding
energies of the ISW can only exist either above the two
subbands or inside the gap between the γ subbands, when
such a gap exists.

It is worthwhile to mention that there does not exist
the ISW whose energy can appear below the bulk sub-
bands of the two ferromagnets for any value of the inter-
face exchange coupling JAB > 0. As will be shown in the
following, the existence of ISW depends on the values of γ
and the parameters of the system.

For simplicity, we only consider the limit case of
NA = NB → ∞, the system we consider here consists of
two semi-infinite ferromagnets [1–3]. We first discuss the
ISW whose energies can appear above the bulk subbands
of the two ferromagnets. In this case, the wave vector kA

and kB have the forms

kA = π + iqA and kB = π + iqB. (23)

The corresponding eigenfunctions of the ISW described by
equations (17a) and (17b) become the following expression

fA(n) = (−1)nCD exp(nqA), (n ≤ −1)

fB(n) = (−1)nC exp(−nqB), (n ≥ 0) (24)

where qA and qB are both real and positive numbers, and

C =
{
R2 exp(2qA)/

[
exp(2qA) − 1

]

+ exp(2qB)/
[
exp(2qB) − 1

]}−1/2

,

D = −R exp(qA). (25)

The parameters µA and µB in the characteristic equa-
tion (21) have the following simple forms

µA = − exp(qA), µB = − exp(qB). (26)

To further simplify our discussion about the eigenproblem
of the characteristic equations (20) and (21), we introduce
the following continuous monotropic transformations

νA = tanh(qA/2), νB = tanh(qB/2). (27)

According to our convention, 0 < νA, νB < 1. Inserting
equations (23), (26) into equations (20), and (21) and us-
ing the above transformations, we can get

νB =

√
γc + β(γ − γc)(1 − ν2

A)
γc + βγ(1 − ν2

A)
(28)
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and

νA

JAS2
A

+
νB

JBS2
B

=
2

SASB

{
1

J0
AB

− 1
JAB

}
, (29)

where

J0
AB =

2SASBJAJB

JAS2
A + JBS2

B

· (30)

and γc is a parameter defined as

γc = 2β/(1 − β). (31)

Substituting equation (28) into equation (29), we imme-
diately obtain a higher-order eigenequation of νA , which
cannot be solved analytically in general. In order to obtain
some useful and essential information on the solutions of
equation (29), particularly on the conditions for the ex-
istence of solutions, we will proceed by introducing two
functions:

G1(νA) =
νA

JAS2
A

+
1

JBS2
B

√
γc + β(γ − γc)(1 − ν2

A)
γc + βγ(1 − ν2

A)
(32a)

and

G2(JAB) =
2

SASB

{
1

J0
AB

− 1
JAB

}
· (32b)

Obviously, G2 is a constant function with respect to νA

and increases continuously from −∞ to 2/(J0
ABSASB) as

JAB varies from 0+ to +∞. G1 is a continuous monotropic
function of νA defined on the closed interval 0 ≤ νA ≤ 1.
It is easily shown that G1 is also the monotonically
increasing function of νA . We, consequently, know that
G1(νA) only at νA = 0 and νA = 1 has a minimum and a
maximum which are given by

G1min =
1

JBS2
B

√
γc + β(γ − γc)

γc + βγ
(33a)

and

G1max =
2

J0
ABSASB

. (33b)

Hence the necessary and sufficient condition for the
existence of a nontrivial solution of equation (29) (i.e.,
G1 = G2) is

G1min < G2(JAB) < G1max. (34)

That is to say, the interface coupling constant JAB must
obey the requirement:

JAB > Jc1
AB = J0

AB

{
1 − αβ

1 + αβ

√
γc + β(γ − γc)

γc + βγ

}−1

.

(35)

Furthermore, it is easy to know from the above discus-
sion that there can only exist one solution of ISW satisfy-
ing condition (35).

We now turn to discuss the ISW whose energies can
exist inside the energy gap between the bulk subbands of
the two ferromagnets. As noted before, the condition for
the existence of such a gap is β < 2/3. For such a case,

kA = iqA and kB = π + iqB (36)

and the corresponding wave functions are

fA(n) = CD exp(nqA), (n ≤ −1)

fB(n) = (−1)nC exp(nqB), (n ≥ 0) (37)

where qA and qB are both real positive numbers, and C is
also given by equation (25), whereas

D = R exp(qA), µA = − exp(qA), µA = − exp(qB).
(38)

The transformations corresponding to equation (27) are
changed into the following forms

νA = coth(qA/2), νB = tanh(qB/2). (39)

Where 1 < νA < ∞ and 0 < νB < 1 for our convention.
Using these transformations and inserting equations (36)
and (38) into equations (20) and (21), we can obtain two
characteristic equations that are similar to equations (28)
and (29). One of them is

νA =

√
1 +

2(1 − ν2
B)

γ(1 − β)(1 − ν2
B) − 2β

· (40)

The other is identical with equations (29) and (30). After
performing the discussion similar to that in this section
before, we can derive the necessary and sufficient condition
for the existence of such ISW, i.e., the interface coupling
JAB and the parameter γ must obey the follow equations

JAB > Jc2
AB = J0

AB

{
1 − βα2

1 + βα2

√
γ + 2
γ − γc

}−1

(41)

and

γc(1 + 2βα2 + βα4)/(1 + 2βα2) < γ ≤ 4. (42)

Obviously, if the interface coupling JAB is large enough
and all of the conditions, i.e., equations (35), (41) and (42)
are satisfied, there will exist two ISW. One is inside the
gap and the other above the subbands of the two ferro-
magnets. For convenience we have plotted the reduced
interface exchange constant J̄c1

AB(γ) = Jc1
AB(γ)/J0

AB and
J̄c2

AB(γ) = Jc2
AB(γ)/J0

AB as functions of γ in Figure 2.
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Fig. 2. The conditions for the existence of ISWs: (a) the curves
of J̄c1

AB(γ) and J̄c2
AB(γ) for α = 1.0 and β = 0.2; (b) the curves

of J̄c1
AB(γ) for α = 1.0 and β = 0.1 ∼ 0.6 (solid lines) and

0.7 ∼ 0.9 (dash lines); and (c) the curves of J̄c2
AB(γ) for α = 1.0

and β = 0.1 ∼ 0.5.
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27. H. Puszkarski, J.C.S. Lévy, J. Phys.: Condens. Matter 2,

4913 (1990)
28. H. Puszkarski, J. Phys.: Condens. Matter 4, 1595 (1992)
29. G.H. Yun, J.H. Yan, S.L. Ban, Phys. Rev. B 46, 12045

(1992)
30. G.H. Yun, J.H. Yan, S.L. Ban, X.X. Liang, Surf. Sci. 318,

177 (1994)


